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Abstract

Previous studies which dealt with the conservation reserve site selection problem used either optimization methods, specifically
linear integer programming (IP), or heuristic algorithms. The trade-off between computational efficiency versus optimality has been
discussed in some articles and conflicting messages were signaled. Although the problem of suboptimality was acknowledged, some
authors argued that heuristics may be preferable to exact optimization because IP models are computationally complex and may
not be solvable when too many reserve sites are involved. On the other hand, some studies reported that fairly large problems could
be solved easily. This paper shows that although the computational complexity argument can be valid for large reserve selection
problems, by properly guiding the solver and exploiting the problem structure, formal optimization can deliver second-best (near-

optimal) solutions that dominate the greedy heuristic solutions.
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Optimal selection of conservation reserves has been
addressed in a series of papers in the past decade, e.g.
Ando et al. (1998), Church et al. (1996), Csuti et al.
(1997), Margules et al. (1988), Nichols and Margules
(1993), Polasky et al. (2000, 2001), Pressey et al. (1993,
1996), and Vane-Wright et al. (1991). The problem is
stated either as minimization of the number of reserves
that > represent a given set of species, or finding a sub-
set of the reserve sites that maximizes the number of
species represented under a given budget constraint.
Both versions of the reserve site selection problem can
be formulated as a linear integer programming (IP)
problem, as being instances of two prototype formula-
tions known as the >set covering problem (SCP) and
the >maximal covering problem (MCP) in the oper-
ations research literature (Church and ReVelle, 1974;
Underhill, 1994; Camm et al., 1996).

Although both the SCP and MCP formulations and
solution algorithms to solve the resulting IP problems
were available for decades, many of the studies cited
above have sought a solution to the reserve selection
problem by using heuristic methods. A widely used
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approach is to select a reserve site at each step in such a
way that the largest number of ‘unrepresented’ species
will be added to the set of species jointly represented by
previously chosen reserve sites. This selection rule,
called the ‘complementarity principle’ in the biological
conservation literature (Williams, 2000; Vane-Wright et
al., 1991), is the basic principle of a heuristic known as
the > greedy algorithm in operations research (Church
and ReVelle, 1974). Complementarity-based reserve
selection may involve more than one attribute, such as
rarity versus species richness, and therefore it can be
done in different ways in different selection problems.
When another attribute with a higher priority than spe-
cies richness is involved, at any step we may not always
select a site that contains the largest number of unre-
presented species. Pressey and Nichols (1989) show that
rarity-based heuristics perform better than the simple
greedy heuristic approach that selects a reserve site with
maximum net contribution to the set of represented
species at each step.

Cocks and Baird (1989) and Underhill (1994) demon-
strated that the greedy heuristic may not necessarily
yield a true optimum solution of the SCP. These argu-
ments were iterated by Camm et al. (1996) who also
discussed the advantages and disadvantages of using
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off-the-shelf IP solvers and emphasized potential com-
putational difficulties when solving large-scale pro-
blems. Indeed IP problems are among the hardest
optimization problems, particularly when the number of
integer (in this case binary) variables is too large. But,
how large is too large? Church et al. (1996) addressed
this issue and showed that problems with a few hundred
species and reserve sites can be solved easily (within 9 s)
using a commercial IP solver (OSL, Optimization Sub-
routine Library, a linear and linear/integer programming
solver developed by IBM Corporation). However,
Pressey et al. (1996) argued that in practice larger pro-
blems may arise and reported that in an empirical study
involving 248 land types and 1885 reserve sites two IP
solvers (LP_SOLVE and LINGO) could find the opti-
mum solution only after running for ten days on a fast
computer. In some cases these solvers simply failed to
return a solution, whereas > slightly suboptimal heur-
istic solutions could be obtained within seconds or
minutes of computation time. They concluded that
whenever an exact optimum solution is practically fea-
sible it should be pursued, yet if one needs quick solu-
tions for large problems heuristics may be valuable and
preferable because computational superiority may
counterbalance the loss of optimality. On the other
hand, Rodrigues and Gaston (2002) showed that even
larger problems than the ones dealt with by Pressey et
al. could be solved within seconds using CPLEX (a lin-
ear programming solver developed by ILOG).

The poor performance of the solvers used by Pressey
et al. (1996) and their frustrating computational experi-
ence may be discouraging for modelers who do not have
expertise in IP methods. It is obviously impractical and
against common sense to tie up a fast computer for days
or weeks to solve a problem for an exact optimum while
a solution which deviates >slightly from the exact
optimum can be obtained from less sophisticated heur-
istics within seconds or minutes. But, is this really the
case and should we be pessimistic about formal optimi-
zation approaches when dealing with large problems?
Or, should we be as optimistic as the studies by Church
et al. and Rodrigues and Gaston suggest? The purpose
of this paper is to shed further light on how difficult the
formal optimization approach really is and present a
practical approach to obtain optimum or second-best
solutions of reserve selection problems. Computational
evidence with various large-scale problems shows that
this approach outperforms heuristics.

1. Integer programming models of reserve selection

The set covering and maximal covering formulations
of the reserve site selection problem are described
below. The notation used in the models is as follows: i
and j denote the reserve sites and species under con-

sideration, respectively; X; is a binary variable where X;
=1 indicates that reserve i is in the network, otherwise
X; =0; Y;is a binary variable where Y; =1 indicates
that species j is protected, otherwise Y, =0; k; is an
integer (= 1) which denotes the minimum representation
target for species j; §; is a scalar where 6;=1 indicates
that reserve ie/ includes species jeJ , otherwise §;,=0; b is
the available conservation budget.

The set covering formulation (SCP) that minimizes
the number of selected sites while representing each
species j at least k; times is as follows:

Minimize E X;
i

such that :
ZS']Xl = kj for all ] eJ
i

The implicit assumption in the above model is that all
species can be protected by selecting an appropriate set
of reserve sites without consideration of any budget
constraint. A more realistic formulation assumes a lim-
ited budget (or an upper limit on the number of reserves
in the network) and maximizes the number of protected
species. This formulation, called the maximal covering
formulation (MCP), is described algebraically below:

Maximize ZY]
J
such that :

Z5iiXi > k;Y; forall jeJ
ZC[X[ < b

The standard SCP and MCP formulations assume
that each species must be represented at least once, that
is k; =1 for all j. The formulations given here are more
general and allow multiple representation targets.

Both the SCP and MCP formulations of the reserve
selection problem are linear IP problems that can be
solved, usually without serious difficulty, using commercial
optimization software. However, solving such problems
can be problematic in some cases, specifically when the
number of reserve sites considered for selection is large.
Pressey et al. (1996) report cases where an optimum solu-
tion could not be obtained in a reasonable solution time or
could not be obtained at all. The reason for this difficulty
lies in the algorithmic procedure, called the ‘branch-and-
bound’ (B&B) algorithm, used by most IP solvers.

2. The branch-and-bound algorithm

In order to understand why an >exact optimum
solution of the seemingly simple problems described



H. Onal | Biological Conservation 115 (2003) 55-62 57

above cannot be found after running a fast computer
for several hours or even days, one needs to understand
how the B&B algorithm works. The details of this
algorithm can be found in optimization textbooks, but
it will be outlined very briefly here to facilitate the dis-
cussion that will follow. The B&B algorithm is an
iterative procedure based on successive partitioning of
the solution set. The partitioning process imposes a
bound (upper or lower) on the value of an integer vari-
able at each step and solves a > relaxed subproblem (a
linear program) that treats the >unbranched integer
variables as continuous variables, starting with one
variable first and gradually increasing the number of
> branched integer variables, until an integer solution is
found. This generates a ‘tree’ which consists of branches
and nodes, where at each node a relaxed linear pro-
gramming problem is solved. The number of nodes can
be extremely large even for the simplest case where all
integer variables are binary (specifically 2” nodes for n
binary variables). To avoid an exhaustive search of the
tree, which may be practically infeasible even for mod-
erate size problems, the algorithm generates a >bound
on the optimum solution as it progresses. During the
B&B iterations many integer solutions can be found and
the bound is updated as improved solutions become
available. If an integer solution is found or the relaxed
problem solution at any node is worse than the bound,
further branching is not done beyond that node. This is
an extremely useful feature of the algorithm. If the user
can provide a good initial bound, called the > cutoff
value, this may eliminate the search over a substantial
portion of the B&B tree and increase the chances for
finding an optimum solution. Besides the bound, at each
iteration the algorithm generates the > best possible
value of the unknown integer solution and calculates the
absolute and percentage deviation of the incumbent
solution from that value, called the >absolute gap and
>relative gap, respectively. The gap parameters, speci-
fied by the user, set the optimality tolerance and the
B&B algorithm stops when an integer solution is found
satisfying the tolerance level. If an exact optimum is
sought with 100% confidence and there is no a priori
knowledge about the optimum value, the gap para-
meters must be specified as zero, which allows no toler-
ance for suboptimality. Note that this may require
an exhaustive search of the entire tree (except
> fathomed branches).

Generally, the algorithm finds an integer feasible
solution early in the process by using a built-in heuristic
(not the greedy heuristic) and then uses the B&B itera-
tions to improve the solution. It progresses very fast in
the beginning and may even find an optimum solution
of the problem in those early iterations. However, a
substantial amount of iterations and processing time
may be needed to >confirm that the incumbent solu-
tion is optimal. A proper optimality criterion and a

good cutoff value can help tremendously to avoid
numerous iterations, although this may terminate the
search prematurely and yield a suboptimum solution.
Commercial IP solvers offer help and report at any
iteration when an improved integer solution is found.
The rate of progress and relative/absolute gap levels are
also reported with a specified frequency (for instance,
OSL reports after solving every 20 nodes). This allows
the user to infer how good a solution is at any iteration
even if the exact optimum solution is unknown. Unlike
other optimization methods, such as linear and non-
linear programming, integer programming is highly user
dependent and demands guidance, but in general it
responds very well to quality input.

How can we use the above ingredients of IP when
solving a large SCP or MCP? For the general IP prob-
lem, it may not be possible to tell whether there can be
an integer solution between the best possible and
incumbent solutions. However, the SCP and MCP have
a special characteristic that can be exploited, namely the
objective function can take integer values only (the
number of reserves or species). Therefore, if a solution
has an absolute gap less than 1.0, it has to be optimal and
the algorithm should be terminated. Just this manipu-
lation may eliminate a substantial number of useless
iterations and several hours of computation time when
solving large problems. Second, if an integer solution is
found and z, is the corresponding objective value, the
user can interrupt the program, supply a cutoff value of
zo—1 in SCP and zy +1 in MCP, and restart. By doing
so, numerous branches and a good portion of the B&B
tree can be skipped during the solution process.

3. Computational experience with large SCP and
MCP models

To see the effectiveness of user intervention methods
mentioned above, a number of SCP and MCP problems
were generated randomly including 50-350 species and
200-3500 reserve sites. The computational experience
with a state-of-the-art optimization software, GAMS
(Brooke et al., 1992) interfaced with OSL, showed that
both the SCP and MCP formulations can be solved to
an exact optimum usually within seconds or a couple of
minutes of processing time for small problems having
up to 100 species and 1000 reserves. Formal optimiza-
tion results were in general 10-15% better than the
greedy heuristic solutions of the same problems. These
findings are consistent with the computational efficiency
results reported by Church et al. (1996), Pressey et al.
(1996), and Rodrigues and Gaston (2002).

For moderately large problems, however, an exact
optimum solution could not be obtained in many cases
when the algorithm was forced to terminate after two
hours of processing time. For instance, in a test problem
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with 200 species and 1273 reserve sites, an integer solu-
tion with 63 reserves was found after about three thou-
sand iterations in a > cold start (i.e. without specifying a
cutoff value), which took just a few seconds. Then, a
second integer solution with 60 reserves was found after
completing 158 thousand iterations, which took about
320 s. The absolute gaps for the two solutions reported
by OSL were 5.9 and 2.1, respectively. The second gap
value implies that the best possible integer solution
cannot be less than 58, therefore the unknown true
solution has to be between 58 and 60. The next two
million iterations (which took about 2 h) did not report
a third integer solution, while reducing the gap very lit-
tle from 2.1 to only 1.4. The last gap value shows that
the optimum solution has to be 59, if it is not 60. When
the relative gap criterion was specified as 0.10 (OSLs
default), however, the cold start again found the integer
solution with 63 reserves quickly and stopped immedi-
ately, because the calculated relative gap (9.9%) was less
than the specified tolerance level. Then the program was
restarted with a cutoff value of 62, and successively with
61 and 60 reserves. In the first two restarts an integer
solution yielding the given cutoff values were found in
less than 6 s, while in the third restart the solution was
found in about 50 s. An integer solution could not be
obtained with the cutoff value of 59 in 5 min of proces-
sing time and OSL was forced to stop. Finally, a cutoff
value of 58 was tried to see if a feasible solution exists.
OSL reported in merely 37 s that a feasible integer
solution does not exist. Thus, the best available integer
programming solution with 60 reserves is either optimal
or the second-best. On the other hand, the greedy heur-
istic solution for the problem indicated that 69 reserves
should be selected to cover all the species, 15% more
reserves than the second-best IP solution. Not only the
number of reserves, but also the lists of selected reserves
were different in the two solutions. Of those 69 reserves
selected by the greedy heuristic, only 26 were included in
the IP solution. The total processing time needed to do
the four IP runs (including the cold start with 0.1 rela-
tive gap) that produced successively reduced integer
solutions was only 70 s. Thus, a significant improvement
was offered by formal optimization relative to the heur-
istic solution and this can be achieved at the expense of
very little computation time. Furthermore, even though
we cannot guarantee that the best available solution is
optimal, we know that it can be at most one reserve
away from the true optimum solution. The heuristic
approach offers no clue regarding this matter.

The situation depicted above was not unique. Many
other test problems indicated a clear comparative
advantage of integer programming over the heuristic
approach in terms of solution quality, and the compu-
tation time was not seriously restrictive. In none of the
test problems could the greedy heuristic find an equal or
smaller number of reserves or a larger coverage than the

formal optimization approach even though the IP solu-
tions were not confirmed to be optimal. It should be
noted, however, that data characteristics can be impor-
tant in reserve selection using heuristics (Pressey et al.,
1999). The random generation of species presence data
may have influenced the degree of suboptimality of
heuristic solutions reported here.

The results of four selected runs with a large number
of species and reserve sites are displayed in Table 1 (run
no.1 through run no.4). In most cases, a cold start pro-
duced an integer solution within the first few thousand
iterations, which took seconds or at most a minute of
processing time, and in some cases B&B iterations gen-
erated improved intermediate integer solutions. How-
ever, in none of those five problems the final solutions
could be confirmed to be optimal although one million
iterations were completed when GAMS/OSL was forced
to terminate. Starting from a cutoff value given by the
greedy heuristic solution produced the same results.
Therefore, using the heuristic approach prior to formal
optimization does not offer any extra help. This is so
because OSL and other IP solvers have their own built-
in heuristics that usually generate an integer solution
quickly. In all test problems considered here the initial
heuristic solutions generated by OSL dominated the
greedy heuristics. Then, the relative optimality gap was
increased to 0.20 (allowing a 20% deviation from the
unknown optimum instead of 1% assumed in the cold
start) and improved cutoff values were provided to
OSL, each time one less than the previous solution
beginning with the first integer solution obtained from
the cold start (see the =>initial estimate column in
Table 1). The algorithm stopped usually within seconds
or minutes (at most 12 min). Improved solutions could
be found in successive iterations, which took not more
than 5 min altogether in three of those four cases. The
last run in each case was repeated with a reduced rela-
tive gap specification (0.01), but still the solution was
not confirmed to be optimal after one million iterations.

The largest problem (run no.4) included 350 species
and 3111 reserve sites, which is much larger than the
problem that was reported to be unsolvable in ten days
by Pressey et al. (i.e. 248 species and 1885 reserve sites).
This example best explains the advantage of the cut-
branch-and-bound method suggested here. The first
feasible integer solution with 100 reserves was obtained
by OSL quickly, within only 63 s, in the cold start. A
second solution with 91 reserves was found in the same
run after about 380 thousand iterations, which took
about 28 min. A further improved solution could not be
found in the next 600 thousand iterations and OSL was
stopped. Starting the cut-branch-and-bound procedure
with the first integer solution (100) and reducing the
cutoff value by one at a time, six more integer solutions
could be found (for space reasons, only four of those
solutions are reported in Table 1). Note that since the
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Table 1
Comparison of the results of GAMS/OSL and heuristic solutions for
optimum reserve site selection that covers all species

Number of selected sites

Run Number of Heuristic Initial  IP Best possible

No. species/reserves solution estimate solution® solution®
1 250/1108 74 - 67 61
66° 66 (46.0) 61
65 65 (6.7) 61
64 64 (83.5) 61
2 250/2508 78 - 71 66
70 70 (10.7) 66
69 69 (253.7) 66
3 300/2642 93 - 78 73
77 77 (23.0) 73
4 350/3111 105 - 100 86
99 99 (53.4) 86
98 98 (52.1) 86
97 96 (10.2) 86
95 95 (65.1) 86
94 94 (1592.8) 86
93 93 (535.1) 86
5 250/2293 253 - 225 (44.7) 211
k=3 222 222 (38.1) 211
220 219 (32.4) 211
218 218 (29.6) 211
217 217 (33.4) 211
216 216 (38.1) 211
6 250/2293 305 - 274 (107.) 256
k; =3 or 15% ¢ 273 273 (171.4) 256

272 272 (1,479.2) 256
271 271 (323.0) 256

4 In the IP solution column, the bold figures are the second-best inte-
ger solutions obtained from GAMS/OSL. Their optimality could not be
confirmed. The figures in parentheses represent the processing times in
seconds when each solution was found and the solver was forced to ter-
minate by specifying a large relative optimality criterion (20%).

® The best possible solution column reports lower bounds for the
unknown optimum solutions. These values are rounded to the nearest
integer values larger than the actual solutions reported by GAMS/
OSL. These values may or may not be the true solutions. Thus, in each
run, the bold values in this column and the IP solution column deter-
mine the range where the unknown true optimum solution lies.

¢ The initial estimate values are the cutoff values provided to OSL.
In the first row of each run, no cutoff value was assigned (cold start).
After the first IP solution was obtained (with a 20% optimality criter-
ion), a cutoff value that is 1 less than the IP solution was assigned.
This process was repeated until an IP solution could not be found in
one million iterations, where OSL was forced to stop (for the sake of
space, some steps of run no. 5 are not presented here). In most cases,
the IP solution was the same as the cutoff value (i.c., the first feasible
solution was reported as the optimum solution—up to the 20%
optimality criterion), but in some cases it was smaller.

d In this run, the minimum representation targets were specified
differently for individual species. Specifically, for each species it is at
least 3 or 15% of the number of sites including that species (rounded
to integer values), whichever is larger.

first solution (100) was quite far from the best possible
solution (86 reserves), a feasible integer solution could
be searched in between, such as 94 reserves, skipping the
restarts between 99 and 94. Just to see where the true

optimum solution of the problem was and how long it
would take to obtain that solution, the cold start was
repeated with zero optimality criterion and a very large
iterations limit (20 million). In about 15 h of runtime
and solving nearly 80 thousand nodes (relaxed linear
programming problems), no better solution than 91
could be obtained. After all those iterations, the abso-
lute gap could be reduced only to 3.4 (thus increasing
the best possible solution of the problem from 86 to 88),
without confirming the optimality of the best available
solution. This observation shows that the computa-
tional difficulty encountered by Pressey et al. (1996) may
not be unique or may not be a solver-related problem.
(Unpredictable performance differences may occur
when using two different codes to solve the same prob-
lem, because each code has its own way of handling the
branch-and-bound tree. While one solver may find a
solution early in the process, the other may have to cover
the entire tree for that.) On the other hand, Rodrigues and
Gaston (2002) report a case where the > optimum solution
of a SCP with 615 species and 1858 reserves was found in
merely 2.2 s. This out-of-the-ordinary processing time may
either be a very special case (due to data characteristics,
occasionally either during the initial heuristic attempts or
after solving the first few relaxed linear programming pro-
blems, the B&B procedure may return an exact optimum
integer solution), or what they have found was actually an
‘intermediate’ solution (rather than the exact optimum)
reported as the optimum solution by CPLEX if a large
optimality criterion was used.

The last column in Table 1 displays the best possible
integer solutions, generated by OSL, for those four
cases. The true optimum solutions may be anywhere
between those values and the best available integer
solutions reported in the IP solution column (figures in
bold). It is quite possible that the IP solutions are the
true optimum solutions, but this cannot be guaranteed.
Assuming that the worst case occurs, i.e. the last column
reports the true optimal solutions, the relative gaps
would be 4.9, 4.5, 5.5, and 8.1%, respectively, for the
four cases. These deviations may seem significant, and
indeed they are. However, they are far better than the
heuristic solutions, as they suggest selecting 10, 9, 16, and
12 fewer reserves (see Table 1) which correspond to 13.5,
11.5,17.2, and 11.4% relative improvement, respectively.

Pressey et al. (1996) report that the deviations
between their heuristic and optimum solutions were
slight. The deviations between the heuristic solutions
and the optimum or > second-best solutions found here
are not slight. The economic cost of setting aside thou-
sands of acres of land with alternative uses and mon-
itoring and maintenance of extra 10-15 reserves can be
substantial, as also argued by Rodrigues and Gaston
(2002). Implementing a reserve selection strategy based
on IP solutions, that may be available within a few
minutes or an hour of computation time, can save
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valuable conservation resources. We must not forget
that the driving force in reserve selection concerns not
the computational complexity or processing time, but it
concerns the scarcity of economic resources.

4. Additional selection criteria

Incorporating additional selection criteria may make
the matter worse for heuristic solutions and widen the
suboptimality. Here 1 consider priority differences
between species groups as an example (priority differ-
ences between reserve sites can also be analyzed simi-
larly). Underhill (1994), Camm et al. (1996), and
Church et al. (1996) all emphasized the possibility of
imposing a site to be included in a reserve network or a
species to be covered by fixing the value of the corre-
sponding binary variables at one in an IP model. A dif-
ferent type of priority relationship may require some
species to be protected first, regardless of the presence of
other species in selected reserves, and only after the cri-
tical species are covered (within the budget or reserve
number limitations), protection of other species can be
taken into account as additional benefit. This type of
restrictions can be directly incorporated in the MCP
formulation or by using relatively large weights for cri-
tical species, as suggested by Church et al. (1996).
Incorporating such priority relationships can be more
problematic in the heuristic approach to MCP. The
greedy heuristic can handle the problem in different
ways. One way is at each step select a reserve site that
contains at least one unrepresented critical species and
represents more species (in terms of both critical and
non-critical species) than alternative sites. Alternatively,
at each step we may select a reserve site that covers the
largest number of unrepresented critical species dis-
regarding the total number of species (as a second rule,
ties can be broken by selecting the site with the largest
number of additional species). Both approaches were
applied in a problem with 100 species, of which 20 were
assumed to be seriously endangered and assigned abso-
lute priority, and 445 reserve sites of which at most nine
were allowed to be selected. The first approach descri-
bed above covered 49 species in all, but five of the cri-
tical species were not covered because of the reserve site
limitation. The second approach covered 19 of the 20
critical species and 34 species all together. Assuming
that the main concern of the analysis is protection of the
20 critical species, the second solution should be pre-
ferred. The IP formulation, on the other hand, found a
solution that covered all of the 20 critical species and a
total of 41 species, thus dominating the better heuristic
solution in terms of both the critical and non-critical
species. This is not surprising because the IP solution
considers the entire set of feasible combinations and
chooses the best alternative, whereas the heuristic
approach proceeds in a myopic way.

The standard SCP formulation used in the above
problems requires that each species must be contained
in at least one selected reserve, i.e. k; =1. In practice,
however, multiple representation targets (occurrence of
some species in more than one site) may be required to
improve the long-term persistence of rare or critically
endangered species. This type of requirements can be
incorporated by specifying the right-hand-side coeffi-
cients of the related representation constraints as inte-
gers greater than one. Pressey et al. (1996) report that in
their analysis an optimum solution could not be
obtained after imposing such a requirement (a minimum
percentage representation for individual land types).
There is no particular reason that makes the latter
problem more difficult, because the multiple-repre-
sentation requirement does not alter the structure of the
B&B tree. The only change occurs in the right-hand-side
coefficients of relaxed linear programming problems
that will be solved at each node, which would not pose
any computational difficulty. However, since typically a
solution of the standard SCP is not feasible for the
multiple-representation problem (namely, when a spe-
cies is represented only once in the SCP solution
whereas the multiple representation may require k; > 1),
the nodes visited during the B&B iterations may be
entirely different in the two cases. Therefore, we may be
able to find a solution of the standard SCP (with k; =1)
within a reasonable runtime, but when multiple repre-
sentation is required obtaining a solution may take too
long (or practically impossible), depending on what
portion of the B&B tree needs to be covered. The cut-
branch-and-bound procedure described in the foregoing
discussion can again be used to solve such problems, as
will be elaborated below.

To see the effect of multiple representation require-
ments, a sample problem was generated randomly
including 250 species and 2293 reserve sites. The occur-
rences of individual species among those 2293 reserve
sites varied (again randomly) between 5 and 40. The
selection problem was solved first with k; =1, and then
with k; =2 and k; =3, for all j. Finally, the representa-
tion targets were specified differently for different spe-
cies by setting k; =3 or 15% of the total occurrence of
species j, whichever is larger. Table 1 reports the results
of the last two runs (labeled as run no.5 and run no.6)
along with the heuristic solutions. It is possible to design
different heuristic rules for this problem. In the parti-
cular application, at each step the heuristic algorithm
selects a site which contains the largest number of spe-
cies that are not yet represented at least k; times in pre-
vious selections. With this rule, the heuristic approach
found that 253 reserve sites would be required to repre-
sent each species at least three times (Table 1, run no.5).
In contrast, the cold start IP solution required only 225
reserves, which could be reduced later to 216 in five
successive runs (which took less than 5 min all together).
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The best possible IP solution indicates that 211 reserves
might be necessary (see Table 1, last column). Therefore,
even though optimality of the second-best solution (216) is
not confirmed, we know that it can be at most five reserves
away from the true optimum solution (if the worst case
occurs, i.e. if selecting 211 reserves is optimal). However, it
is far better than the heuristic selection (37 fewer sites,
which corresponds to 16% improvement). In all cases
with multiple representation targets, the optimal solution
could not be obtained after completing one million B&B
iterations when the solver was stopped. These results sug-
gest that when a large number of reserves and multiple
representation criteria are involved, it may be generally
difficult to obtain an exact optimum without interference
to the IP solution process. However, as in the case of sin-
gle representation problems, the cut-branch-and-bound
procedure can again be used conveniently to produce a
near-optimum reserve selection in a reasonably short
processing time. Moreover, this approach significantly
outperforms the greedy heuristic approach.

5. Conclusions

The main conclusion of this paper is this: formal
optimization should be preferred to heuristic approa-
ches, regardless of the problem size or complexity, as
long as the reserve selection problem can be formulated
in a linear IP framework. In general, computation time
does not pose a serious obstacle when working with
fairly large models. Even if an exact optimum solution is
difficult to obtain, second-best (near-optimum) solu-
tions can be found within a reasonable computation
time. As demonstrated in this study, IP solvers can
deliver considerably improved reserve selection alter-
natives (even though they may not be optimal) com-
pared with heuristic solutions. This can be done by
properly guiding the solver, such as the cut-branch-and-
bound approach presented here. This approach can be
used conveniently in any reserve selection problem if the
objective function is integer valued (such as the number
of reserves, species, or boundary edges, etc.).

Besides superior output, state-of-the-art optimization
software such as GAMS, AMPL, MPL, etc., offer other
practical advantages. They are interfaced with a long list
of linear IP solvers each having comparative advantage
in different problem situations and operate on different
domains, including PCs, workstations and mainframe
computers, without any change in the source code. This
opens wide possibilities for collaborative research and
allows easy access to different models developed by dif-
ferent research groups. These are in general difficult
with custom-made heuristic programs.

It is generally perceived that IP is not suitable for
modeling reserve selection problems with spatial con-
siderations (such as proximity and connectivity of sites

in a reserve network) or for incorporating genetic
diversity in species conservation. Several studies have
used heuristics just because of this largely false percep-
tion. Recent studies by Onal (2002), Onal and Briers
(2002), and Rodrigues and Gaston (2002) showed that
the SCP and MCP formulations can be extended to
incorporate additional selection criteria, including spa-
tial considerations and genetic diversity, without any
serious computational problem. Thus, the real challenge
is to broaden our modeling library to incorporate addi-
tional and realistic selection criteria in a linear IP frame-
work, rather than how to deal with the computational
complexity of integer programming.
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